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The Ratio Dint/D between the Coefficients for the
Diffusion of Internal Energy and of Self Diffusion
in Thermal Conductivity Data Correlations
for Gases of Linear Molecules1

E. Vogel,2,3 E. Bich,2 and S. Bock2

Highly consistent sets of generalized cross sections are used to judge crit-
ically correlations of the thermal conductivity in the limit of zero density
for nitrogen, carbon monoxide, and carbon dioxide. The correlations were
developed by Millat, Vesovic, and Wakeham some years ago using restricted
experimental information in order to deduce a set of generalized cross sec-
tions as consistent as possible for the extrapolation beyond the temperature
range of the primary experimental data. Recently, the generalized cross sec-
tions needed have been evaluated by means of classical trajectory calculations
for rigid rotors on the basis of accurate anisotropic ab initio potential energy
hypersurfaces including a new improved way to take into account the vibra-
tional degrees of freedom. It is shown that the ratio between the coefficients
of internal energy and of self diffusion Dint/D was not appropriately chosen
and that this effect was extensively compensated in a fortuitous way in the
course of the development of the data correlations by a likewise unsuitable
choice of the ratio A∗ between the effective cross sections of viscosity and
self-diffusion.
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1. INTRODUCTION

The formal exact kinetic theory of dilute polyatomic gases [1], which
relates the transport and relaxation phenomena to a number of gener-
alized cross sections, is well developed, but essentially more complicated
than the theory for monatomic gases [2]. The complications are due to
the internal energy states and to the potential energy hypersurfaces of
the molecules. Nevertheless, extensive classical trajectory (CT) calculations
using accurate intermolecular interaction potentials have been performed
for such phenomena, but first have remained restricted to linear diatomic
molecules treated under the assumption that they behave as rigid rotors.
For viscosity and self diffusion it has been assumed that the effects of
vibrational modes of motion can be neglected, because the vibrational
state of a molecule does not practically influence the transport of mass
and momentum, and that collisions characterized by an exchange of vibra-
tional energy with translational or rotational energy are rare. However, in
the case of thermal conductivity which measures the transport of energy
through the gas, vibrational excitation of the molecule representing stored
energy becomes important and the rigid-rotor assumption is much more
questionable.

Heck and Dickinson as well as Heck et al. [3–5] performed rigid-rotor
CT calculations for nitrogen and carbon monoxide using anisotropic ab
initio potential energy hypersurfaces of van der Avoird et al. [6] (nitrogen)
and of van der Pol et al. [7] (carbon monoxide). But in the following cal-
culation procedure for thermal conductivity, they did not completely con-
sider the effects of vibrational modes.

Bich et al. [8] proposed recently a distinctly improved way for the
inclusion of the vibrational degrees of freedom into rigid-rotor calcula-
tions of the thermal conductivity of linear molecules and presented a
re-evaluation of the results for nitrogen and carbon monoxide. The CT
calculations were extended to carbon dioxide [9,10], since new ab initio
potential-energy hypersurfaces for CO2 were developed [11–13] and the
effects of the vibrational modes on thermal conductivity have been
expected to be of greater importance.

Correlations of thermal conductivity data in the limit of zero density
for nitrogen and carbon monoxide were developed by Millat and Wake-
ham [14] and another one for carbon dioxide by Millat et al. [15] and
by Vesovic et al. [16], all more than ten years ago. Unfortunately, the
temperature range of selected primary experimental thermal conductivity
data determined by means of the transient hot-wire technique was rather
restricted (from 300 to 470 K for nitrogen and carbon dioxide and from
300 to 430 K for carbon monoxide). Hence, these authors included in
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their primary data sets a small number of data of significantly greater
uncertainty. But they could not improve the worse situation with respect
to reliable data at higher temperatures. To obtain thermal conductivity
data correlations for temperature ranges similar to that for the viscos-
ity, Millat, Vesovic, and Wakeham derived a consistent set of generalized
cross sections for the real gases under discussion using auxiliary experi-
mental data available for the complete temperature range intended. The
theoretically-based procedure for the extrapolation to high temperatures
was essentially based on the ratio between the coefficients for the diffusion
of internal energy and of self diffusion Dint/D including two comparably
rough approximations.

In this paper the reliability of the data correlations for the three gases
is assessed by comparison with the results of the CT calculations. The
correlations are particularly discussed with regard to the fact that the
high-temperature limit for Dint/D used by Millat, Vesovic, and Wakeham
should not be achieved at such low temperatures like 500 K.

2. THEORETICAL FORMULATION FOR A REAL GAS
OF LINEAR MOLECULES

In the first-order approximation of the kinetic theory, the field-free
thermal conductivity for a polyatomic gas is given according to the two-
flux approach as the sum of the translational part [λtr]1 and internal part
[λint]1.

[λ]1 = [λtr]1 + [λint]1 = 5k2
BT
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where kB is Boltzmann’s constant, T is the temperature, and m is the mass
of the molecule. r is given by

r =
(

2
5

cint

kB

)1/2

. (4)

Here cint is the contribution of both the rotational, crot = kB, and the
vibrational, cvib, degrees of freedom to the isochoric heat capacity, cV , for
linear molecules.

cint = crot + cvib (5)

The generalized cross sections S

(
p q s t

p′q ′s′t ′

)
represent the collisional cou-

pling between the microscopic tensor polarizations of the reduced molecu-
lar velocity W and the rotational angular momentum j. The notation used
in their labeling is fully given in McCourt et al. [1].

The two-term expansion given in Eq. (1) does not give an exact solu-
tion of the generalized Boltzmann equation [1,17], but it yields already a
good approximation. There exist two independent second-order contribu-
tions to the thermal conductivity. Formulae for the second-order approxi-
mation resulting from the tensorial basis set function Φ10st were reported
by Maitland et al. [18]. This second-order contribution is only up to 1%
related to the first-order contribution and has not been used in the devel-
opment of the data correlations. The second contribution to the thermal
conductivity coefficient, termed polarization contribution and considered
in the data correlations, arises because the nonequilibrium distribution
function for a polyatomic gas is generally anisotropic in the rotor angular
momentum j. The second-order approximation for the thermal conductiv-
ity in the field-free case, which includes only the main polarization contri-
bution and is known as the Kagan-Afanasev approximation [19], can be
formulated according to a proposal by Viehland et al. [20] as

[λ]′2 = [λtr]1 + [λint]1 Sλ (6)

Sλ =1+
S̄

(
1200
1001

)2

S(1001)S̄(1200)(1)
(7)

Relations between unbarred and barred cross sections occurring in Eq. (7)
are given in Ref. 1.

As already stated in Section 1, real gases of diatomic and triatomic
molecules cannot be considered as composed of rigid rotors. Nevertheless,
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both the ab initio calculations of the intermolecular potential hypersurfac-
es and the CT calculations have been performed under this assumption.
Hence, the generalized cross sections obtained from the CT calcula-

tions correspond to S
(

p
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q
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s
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t
t ′
)(k)

rot
, whereas the theoretical formulation

given above requires generalized cross sections S
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int
taking into

account all the internal degrees of freedom.
Recently Bich et al. [8] and Bock et al. [10] have proposed a very rea-

sonable procedure for the modification of the rigid-rotor generalized cross
sections needed for the calculation of the thermal conductivity. Here, the
generalized cross sections can be expressed as
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Then in the first-order approximation of thermal conductivity, i.e., in
Eqs. (1) and (2), the cross section S(1010)int corresponds practically to
S(1010)rot resulting from the CT calculations, whereas S

(
1010
1001

)
int

has to

be deduced from S
(

1010
1001

)
rot

by means of Eq. (8). For cross sections of

the type t + t ′ �2, more complex expressions are obtained. Specifically, for
the cross section S(1001)int also entering the first-order approximation, it
results [8,10] in

S(1001)int =
crot

cint
S(1001)rot + cvib

cint
S′(1000)rot. (9)

S′(1000)rot corresponds to the so-called self-part for one molecule and is
related to the self-diffusion coefficient.

3. METHODOLOGY OF DATA CORRELATION

To derive thermal conductivity data correlations for temperature
ranges as large as possible, Millat and Wakeham [14] for nitrogen and car-
bon monoxide as well as Millat et al. [15] and Vesovic et al. [16] for car-
bon dioxide evaluated a consistent set of generalized cross sections using
as auxiliary information the temperature dependences of the ideal-gas heat
capacity, of the viscosity, and of the collisional numbers of the rotational
and vibrational energy relaxation as well as data on the fractional change
of the thermal conductivity in a magnetic field.

This analysis was based on the theoretical formulation described in
the last section, i. e., on Eq. (6) including Eqs. (1), (2), and (7). In
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particular, expressions for the temperature dependence of the three gen-
eralized cross sections S(1010), S(1001), and S

(
1010
1001

)
occurring in the

first-order approximation are needed. Two of them are related to other
generalized cross sections by means of the following exact relationships
where the cross sections S(0010) and S(0001) are associated according to
the conservation law of energy:

S(1010) = 2
3
S(2000)+ 5

6
S(0010)= 2

3
S(2000)+ 25

18
r2S(0001) (10)

S
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)
= − 1

2r
S(0010)=−5r

6
S(0001) (11)

The ideal-gas heat capacities at constant pressure were used to get cint
as well as crot and cvib using Eq. (5) for the corresponding gases.

Values of the generalized cross section S(2000) were deduced from
experimentally based viscosity data correlations of the gases via

[η]1 = kBT

〈v〉0

1
S(2000)

(12)

The generalized cross section S(0001) is related to the collisional
number for internal energy relaxation by

ζint =
4
π

S(2000)

S(0001)
(13)

Whereas S(2000) and S(0010) are practically not influenced by vibra-
tional degrees of freedom, S(0001) and ζint include contributions of rota-
tional and vibrational degrees of freedom.

cint

ζint
= crot

ζrot
+ cvib

ζvib
(14)

The relationship Eq. (14) can in those cases, in which the vibrational colli-
sional numbers are much larger than the rotational ones, be approximated
by

cint

ζint
≈ crot

ζrot
(15)

Measurements of ζvib as well as of ζrot are needed to derive S(0001) for
the real gas by means of Eqs. (14) or (15). Since there existed only a lim-
ited number of measurements, such as the determination of thermomolec-
ular pressure differences, which allow rotational collisional numbers ζrot
to be deduced [21], Millat et al. [14,15] used a relationship by Brau and



Ratio between Coefficients for Diffusion of Internal Energy and Self Diffusion 315

Jonkman [22] to generate the temperature dependence of ζrot for the com-
plete temperature range corresponding to that of S(2000).

ζrot = ζ∞
rot

[
1+ π3/2/2

T ∗1/2
+ 2+π2/4

T ∗ + π3/2

T ∗3/2

]−1

(16)

Here T ∗ is the temperature reduced by an averaged energy scaling param-
eter. Millat, Vesovic, and Wakeham did not take into account the vibra-
tional energy relaxation in the case of nitrogen and carbon monoxide by
using Eq. (15), but for carbon dioxide, Millat et al. [15] considered ζvib
values taken from the literature.

The relationships Eqs. (10) and (11) together with the deduced gener-
alized cross sections S(2000) and S(0001) were used to get values of the
cross sections S

(
1010
1001

)
and S(1010).

The cross sections needed for Sλ of the real gas in Eq. (6) including
Eq. (7) are related to values measured in applied magnetic fields at satu-
ration (high magnetic field to pressure ratio).

Sλ =1− 5
3

(
1+ λtr

λint

)(
∆λ‖
λ

)
sat

(17)

(∆λ‖/λ)sat represents the saturation value of the relative change of λ mea-
sured parallel to an applied magnetic field. Millat, Vesovic, and Wakeham
employed experimental (∆λ‖/λ)sat values, assumed to be almost tempera-
ture-independent, together with experimental thermal-conductivity data to
derive S(1001) values for the real gas. In this way they got a consistent
set of generalized cross sections for the restricted temperature range of the
primary data.

In order to extend the temperature range beyond that of the primary
thermal conductivity data, particularly to high temperatures, Millat, Veso-
vic, and Wakeham tried to substitute the temperature function of the gen-
eralized cross section S(1001) by that of the so-called diffusion coefficient
of internal energy Dint, which was introduced and defined by Mason and
Monchick [23], Monchick et al. [24], and Viehland et al. [20]:

[Dint]1 = kBT

nm〈v〉0

[
1

S(1001)int − 1
2S(0001)int

]
(18)

Here, n is the number density. Because Dint is practically not measur-
able, they replaced Dint by the ratio of the diffusion coefficient of internal
energy to the self-diffusion coefficient including two very rough approxi-
mations. The ratio Dint/D as a function of temperature is exactly given in
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the first approximation of the kinetic theory by[
Dint

D

]
1
= S′(1000)rot

S(1001)int − 1
2S(0001)int

(19)

One approximation of Millat, Vesovic, and Wakeham concerns the
generalized cross section S(1001) itself. For rigid-rotor molecules at high
temperatures it has been shown [25,26] that S(1001)rot can be approxi-
mated by

S(1001)rot ≈Ssph(1001)+ 35
12

r2
rotS(0001)rot (20)

where the spherical part of the effective cross section Ssph(1001) can be
identified to be the self-diffusion cross section S′(1000)rot. Then the ratio
of the diffusion coefficient of the rotational energy to the self-diffusion
coefficient is approximately given in the high-temperature limit by[

Drot

D

]
1
≈ S′(1000)rot

S′(1000)rot +
(

35
12 r2

rot − 1
2

)
S(0001)rot

(21)

The limiting value of this ratio at very high temperature should approach
unity from below, since S(0001)rot will become zero at T →∞.

lim
T →∞

[
Drot

D

]
1
≈1 (22)

It is to be stressed that this approximate relation was derived for the dis-
torted wave Born approximation in the case of homonuclear or nearly
homonuclear diatomic molecules [1,25,26]. It was also adopted by Millat,
Vesovic, and Wakeham to be valid for real gases of linear molecules.
This approximation is to be compared with values for the exact first-order
approximation of a gas consisting of rigid-rotor molecules,[

Drot

D

]
1
= S′(1000)rot

S(1001)rot − 1
2S(0001)rot

(23)

as well as with values of [Dint/D]1 according to Eq. (19) for a real gas.
The second approximation is related to the self-diffusion coefficient

for which only a limited number of measurements with moderate uncer-
tainty in a restricted temperature range is available. In principle, D or bet-
ter S′(1000) could be substituted by means of the infinite-order sudden
approximation (IOSA) or the Mason–Monchick approximation (MMA) as
its classical limit [23,27,28]. In the framework of the MMA the general-
ized cross sections, which measure the rotational relaxation like S(0001),
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are zero. Hence, the ratio [Drot/D]1 is equal to unity at all temperatures.
The MMA is comparably more successful in evaluating the effective cross
sections dominated by elastic and weakly inelastic collisions, that means
S(2000), S′(1000), and their dimensionless ratio,

A∗ = 5
6

S(2000)

S′(1000)
, (24)

as well as the relationship between the self-diffusion and viscosity coeffi-
cients:

[D]1 = [η]1
nm

S(2000)

S′(1000)
= [η]1

nm

6A∗

5
(25)

Millat, Vesovic, and Wakeham could not use the MMA result of the
dimensionless ratio A∗ for the corresponding intermolecular potential
energy surfaces of the molecular gases under discussion and were forced
to evaluate A∗ according to the theorem of corresponding states for mon-
atomic gases [2]. For monatomics, A∗ is weakly dependent on the spherical
pair potential between the molecules and also weakly dependent on tem-
perature.

As a summary, the following relationship is to be considered as the
working equation for the generalized cross section S(1001):

S(1001)=S(2000)


 2

πζint
+ 1[

Dint
D

]
1

6
5A∗


 (26)

In the temperature range of the primary thermal-conductivity data, the
deduced S(1001) values were applied to calculate and to correlate [Dint/D]1
using the experimentally based values of S(2000) and of ζint as well as A∗
from the theorem of corresponding states. Surprisingly, Millat and Wake-
ham [14] found that [Dint/D]1 already approached unity from below at
430 K for nitrogen and at 485 K for carbon monoxide, whereas Millat
et al. [15] and Vesovic et al. [16] reported the same for carbon dioxide at
530 K. Consequently, above these temperatures [Dint/D]1 was chosen to
be unity for the thermal conductivity data correlations, so that S(1001)int
was evaluated by means of [Dint/D]1 = 1 for the purpose of extrapolation
to high temperatures.

4. ANALYSIS AND DISCUSSION OF THE DATA CORRELATIONS

The conclusion by Millat, Vesovic, and Wakeham concerning [Dint/D]1
is to be further considered. The argument that [Drot/D]1 becomes unity
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for rigid rotors within the distorted wave Born approximation in the limit
of high temperatures is very weak. Figures 1 to 3 (Part A) make evident
that the values of [Drot/D]1 calculated according to Eq. (21) using the
CT rigid-rotor calculations for the corresponding intermolecular potential-
energy surfaces [6,7,12] are far from unity for all three gases. This holds
even at the highest temperatures of the experimental thermal conductiv-
ity data or data correlations: 2100 K (nitrogen and carbon monoxide) and
1500 K (carbon dioxide). The closest approach to unity is found for nitro-
gen with 0.87 at 2100 K; the worst is given for carbon dioxide with 0.71
at 1500 K. The figures show also values for the first-order approximation
of a gas consisting of rigid-rotor molecules (Eq. (23)) as well as values
of [Dint/D]1 according to Eq. (19). A distinct increase of 10% and more
can be seen for [Drot/D]1 according to Eq. (23) compared with the Born
approximation (Eq. (21)) for all three gases, but only for nitrogen is unity
nearly approached at the highest temperatures. A further increase is illus-
trated for [Dint/D]1, particularly for carbon dioxide for which the vibra-
tional degrees of freedom are of greater importance. The Parts A of the
three figures demonstrate that the [Dint/D]1 values increase with a ten-
dency to unity at high temperatures. Nevertheless, deviations of almost 5%
(nitrogen at 430 K), 17% (carbon monoxide at 485 K), and nearly 9%
(carbon dioxide at 530 K) are observed at those temperatures at which
Millat, Vesovic, and Wakeham assumed that the ratio [Dint/D]1 already
becomes unity.

Equation (26) elucidates that the deviations of [Dint/D]1 from unity
can be compensated by a corresponding choice of the A∗ values. In Parts
B of Figs. 1–3, A∗ values resulting for the theorem of corresponding
states [2], for the Monchick-Mason approximation (MMA) [23,27,28], and
for the CT calculations are illustrated for nitrogen, carbon monoxide, and
carbon dioxide. It is to be mentioned that in the framework of the theo-
rem of corresponding states the A∗ values for nitrogen and carbon mon-
oxide are equal and those for carbon dioxide are extrapolated beyond
the validity range of the A∗ functional (T ∗ < 1) at the lowest tempera-
tures. All three figures show that the A∗ values deduced for the theorem
of corresponding states on the one hand and calculated for the MMA
on the other hand are approximately the same. However, the A∗ values
resulting from the CT calculations of the generalized cross sections for
the anisotropic potential-energy surfaces are higher by several per cent (3–
5% for nitrogen, 5–7% for carbon monoxide, 8% for carbon dioxide). It
is obvious that A∗ for the molecular gases cannot be determined on the
basis of the theorem of corresponding states of the monatomics or with
the MMA. Furthermore, the smaller A∗ values for the theorem of corre-
sponding states are the main reason that Millat, Vesovic, and Wakeham
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Fig. 1. Nitrogen. Part A: The ratio of the diffusion coefficient for rotational
or internal energy to the self-diffusion coefficient as a function of temperature.
· · · · · · · · · Dint/D according to Millat and Wakeham [14]; − − − − − [Drot/D]1,
Eq. (21); − ·− ·− ·− · [Drot/D]1, Eq. (23); ———— [Dint/D]1, Eq. (19). Part B:
The dimensionless ratio A∗ (Eq. (24)) as a function of temperature. · · · · · · · · ·
according to the theorem of corresponding states [2]; −−−−− according to the
Mason-Monchick approximation [23,27,28]; ———— according to the classical
trajectory calculations for rigid rotors.

already obtained [Dint/D]1 values near to unity at the higher tempera-
tures of the range of the primary thermal conductivity data, i.e., at about
450–500 K. This statement is also of importance with respect to the dis-
cussion by Vesovic and Wakeham [28,29] that [Dint/D]1 values above unity
were deduced for methane and ethane using the analogous procedure for
the development of thermal-conductivity data correlations for these gases.

Finally the choice and treatment of the collisional number ζint plays
also a certain role for the [Dint/D]1 values deduced by Millat, Vesovic, and
Wakeham. Equation (26) reveals that its influence is smaller, because the
contribution of the first summand in the brackets is about a tenth of the
second in the case of ζint values of five to ten. In Fig. 4 ζrot values for car-
bon dioxide recommended by Millat et al. [15] and by Vesovic et al. [16]
according to the Brau–Jonkman formula (Eq. (16)) are compared with ζrot
values obtained from the exact classical trajectory calculations for rigid
rotors. The figure includes also a comparison of the ζint values deduced
with Eq. (14). Whereas for nitrogen and carbon monoxide the differences
between the ζint values of Millat and Wakeham [14] and those resulting
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Fig. 2. Carbon monoxide. Part A: The ratio of the diffusion coefficient for rota-
tional or internal energy to the self-diffusion coefficient as a function of temper-
ature. Legend: the same as Fig. 1. Part B: The dimensionless ratio A∗ (Eq. (24))
as a function of temperature. Legend: the same as Fig. 1.

Fig. 3. Carbon dioxide. Part A: The ratio of the diffusion coefficient for rota-
tional or internal energy to the self-diffusion coefficient as a function of tempera-
ture. · · · · · · · · · Dint/D according to Millat et al. [15] and Vesovic et al. [16]; fur-
ther legend: the same as Fig. 1. Part B: The dimensionless ratio A∗ (Eq. (24)) as
a function of temperature. Legend: the same as Fig. 1.
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Fig. 4. Carbon dioxide. The collisional number for internal energy relax-
ation as a function of temperature. · · · · · · · · · ζrot values according to the
Brau-Jonkman formula (Eq. (16)) by Millat et al. [15]; − − − − − ζrot val-
ues according to the CT calculations for rigid rotors; −·−·−·−· ζint values
deduced with Eq. (14) via the Brau-Jonkman formula by Millat et al. [15]; —
——— ζint values deduced with Eq. (14) using the CT calculations for rigid
rotors.

from the classical trajectory calculations are comparably small and hence
not shown, the ζint values for carbon dioxide differ by a factor of two at
1000 K. The reason is certainly that the Brau–Jonkman formula proposed
for homonuclear diatomic molecules is not appropriate to model the rota-
tional collisional number of a molecule like carbon dioxide.

The discussion shows that it is difficult to analyze in a complete man-
ner the effects of the different input quantities used in the data corre-
lations. Therefore, it seems to be reasonable to compare the values for
the bracket expression of Eq. (26) obtained for the data correlations and
following from the CT calculations. Figure 5 demonstrates for nitrogen
and carbon monoxide that the corresponding differences of the bracket
expression amount to approximately +4% (nitrogen) and −5% (carbon
monoxide) at 700 K and decrease with increasing temperature to +2%
(nitrogen) and −1% (carbon monoxide) at 2100 K. In the case of carbon
dioxide (not shown here), the difference amounts to −3% at 700 K and
about −1% at 1500 K. It is evident that the temperature dependence of
the bracket expression is above 700 K within narrow limits the same for
the correlations as well as for the CT calculations in the case of all three
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Fig. 5. Values of the bracket expression of Eq. (26) as a function of tem-
perature. Nitrogen: · · · · · · · · · according to the data correlation by Millat and
Wakeham [14]; −−−−− according to the CT calculations for rigid rotors.
Carbon monoxide: − · − · − · −· according to the data correlation by Millat
and Wakeham [14]; ———— according to the CT calculations for rigid
rotors.

gases. This makes clear that the erroneous choice of [Dint/D]1 and of A∗
in the course of the development of the data correlations has been mutu-
ally compensated in a fortuitous way.

5. CONCLUSIONS

More than ten years ago Millat, Vesovic, and Wakeham developed
data correlations for the thermal conductivity of nitrogen, carbon monox-
ide, and carbon dioxide. To extend the temperature range of that correla-
tions beyond the range of primary experimental data, the authors tried to
obtain a consistent set of generalized cross sections from different exper-
imental sources. Therefore, several approximations had to be introduced.
Results of these correlations and the quality of the approximations used
can now be compared with generalized cross sections evaluated by means
of classical trajectory calculations for rigid rotors on the basis of accu-
rate anisotropic ab initio potential energy hypersurfaces including a new
improved way to take into account the vibrational degrees of freedom.
The presented critical analysis makes evident that the ratio between the
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coefficients of internal energy and of self diffusion Dint/D used for the
determination of the generalized cross section for the internal energy flux
S(1001) was not appropriately chosen. However, this effect was extensively
compensated in a fortuitous way in the course of the development of the
data correlations by a likewise unsuitable choice of the ratio A∗ between
the generalized cross sections of viscosity and self-diffusion.

REFERENCES

1. F. R. W. McCourt, J. J. M. Beenakker, W. E. Köhler, and I. Kuščer, Nonequilibrium Phe-
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